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Introduction
The coefficient of aerodynamic drag is a very important parameter having a major effect on the performance of small rockets.  In fact, it’s influence on performance is greatest for the smallest rockets due to square-cube effects.  Based on physics, there are four sources of drag:
1. Skin friction

2. Wave drag

3. Base drag

4. Parasite drag

Skin friction is what it sounds like, the effect of viscous boundary layer friction between the air and rocket body.  Wave drag is an unavoidable consequence of supersonic flow.  Base drag is associated with a blunt base behind a body or airfoil.  Parasite drag arises from all the little things like uneven joints, riding lugs, etc.  Drag due to lift, or induced drag, is not addressed here because sounding rockets fly at very nearly zero lift.  Each of these is discussed in its own section below.  Finally, the reader is strongly urged to buy him/her self a copy of Dr. Hoerner’s most wonderful book used as ref. 1 in this report.

The material contained here tends to not generate a smooth curve over a wide range of Mach numbers.  This is especially true when transonic flow appears.  In such cases, the customary path followed by an analyst is to use his analytical tools whenever possible, and supplement these with a favorite set of french curves.  Although it’s not exact, in a practical sense, it works.

Nomenclature
_________Mnemonic______   _________Definition____________________________
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                           Area of one side of one fin panel
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                           Aerodynamic reference area
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                          Base area of the body
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                            Rocket motor nozzle exit area
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                            Average Skin friction coefficient
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                           Skin friction drag coefficient
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Skin Friction Drag


For the majority of small hobby rockets, skin friction is the dominant source of drag.  The tricky part of estimating skin friction drag arises from the fact that the surface boundary layer can take on two forms, laminar and turbulent.  Laminar boundary layers have a smooth orderly character whereas turbulent boundary layers are highly disorganized and chaotic.  For both types, skin friction depends strongly on Reynolds number.

Now, refer to Fig. 1, Chapter II of ref. 1.  First, note that it doesn’t matter much whether the surface is flat or cylindrical.  Next, consider the Blasius laminar friction coefficient given by
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The Schoenherr model for turbulent boundary layers is
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A simpler model that is almost as accurate is
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We will use eq.(3) instead of eq. (2).


There has probably been more written about transition from the laminar to the turbulent state than on almost any other topic in fluid mechanics.  We are more than a century after scientists knew that this was an important problem, but still there is no definitive answer.  Here, we adopt the process commonly used industrially.  Transition is assumed to happen instantaneously at a transition Reynolds number.  For typical aircraft/rocket bodies of revolution, take
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and for fins take
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The reason for the difference is the boundary layer on the fore body is being continously thinned, and therefore stabilized, as it moves aft.  If the fin leading edges are not smoothly rounded to a good approximation to a hemispherical contour, boundary layer transition will occur at the low value given by eq. (4b) above.  Note that the transition Reynolds number can be shown to make a significant difference in the estimated drag.  Since the Reynolds number where the laminar and turbulent skin friction curves cross is about 10,000, it follows that at transition, the turbulent skin friction is much larger than the laminar.

How might this be used to estimate the skin friction drag of a rocket?  First, decompose the “skin” into rectangular panels, each of length L along the velocity vector and transverse width W.  It’s important that the product L*W match the length and wetted area of the surface in question.  Next, find the maximum length 
[image: image27.wmf]T

l

 of laminar boundary layer:
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If  
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 then the entire area will have a laminar boundary layer, and eq. (1) can be used to estimate
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.  Otherwise, use eq. (1) up to the transition point given by eq. (5).  Behind the transition point, the boundary layer will be turbulent.  Then,
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where
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.  The third term is needed to eliminate the double bookkeeping over the forward (laminar) part of the surface.

A simple example is illustrative.  Suppose the rocket body were 110 inches long and 6 inches in diameter.  The forward section is a tangent ogive 30 inches long.  Then, the wetted area is 379.25 in2 (ogive) + 1507.96in2 (cylinder) = 1887.21 in2.  Since L = 110 in, the width = 1887.21/110 = 17.156 in.  Assuming the reference area is the body cross section area, 
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28.27 in2.  The skin friction drag coefficient is then
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Fin drag can be similarly estimated, but with two slight differences.  First, keep in mind that both sides of a fin are subject to skin friction drag.  Second, when estimating L and W we assume that all areal elements have the same W, but not the same L.  Given a fin area and exposed semispan W find the L that matches the wetted are.  The 
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is estimated as for a body, and the skin friction drag is
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Next, consider the effects of compressibility.  See page 15-9 and 17-4 of ref. 1.  The compressible boundary layer, both flavors, is known to depend on heat transfer, and, if applicable, on ablation.  Reference 1 suggests for modest heating, the laminar skin estimate friction need not be altered, and the turbulent boundary layer skin friction as given by eq. (3) above be reduced according to:
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assuming an adiabatic wall (probably a good approximation in most practical cases).

It’s interesting to recall that a pseudo-Mach number dependence can be obtained by writing:
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At sea level standard day conditions, this is equivalent to
                                                        
[image: image40.wmf]lM

x

R

e

6

10

154

.

7

=

                                                    (9)

This has been used in the spread sheet called DRAG COEFFICIENT2.xls to generate skin friction and base drag coefficients.  For the body and fins mentioned above.
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Wave Drag


Wave drag is associated with the presence of shock waves in the flow around a body.  Although these are seen locally at high subsonic Mach numbers, easy classical analyses are not possible until the Mach number is high enough for well-developed supersonic flow.  For the wave drag of bodies of revolution, use the techniques of ref. (3).   For the very blunt parts of a rocket, e.g., a hemispherical nose cap on the body, or  hemicylindrical fin leading edges, the Modified Newtonian theory of ref. (4) can be used.

Consider next the ogive-cylinder shape discussed as an example in the Skin Friction Drag section.  The ref.(3) model has been coded into LOW SUPERSONIC BARROWMAN EQUATIONS.xls.  This code has been used to prepare the top plot shown below.  The ref. (4) model has been coded into NEWTON.xls, and used to evaluate the fin leading edge wave drag.  The lower plot, obtained from the spread sheet NEWTON.xls, is the Newtonian wave drag for 4 fins 3/16” thick swept at 45o.  Each fin has a hemicylindrical leading edge 0.707 feet long.  Note that the fin wave drag is zero when the leading edges are subsonic.
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[image: image43.emf]Fin Leading Edge Wave Drag
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Base Drag

Reference 1, p 3-19, provides an estimate on incompressible base drag:
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Here 
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is the fore body (not including fins) skin friction drag as found above.  The effects of compressibility are interesting as shown on p.16-4 of ref. 1.  For well-developed supersonic flow, the base drag is approximately 65% of that for a vacuum:
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For transonic flow, the base drag is independent of Mach number:
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That is, the transonic base drag is the incompressible base drag given by eq. (10) above plus the increment given by eq. (12).  The reference point for eq. (12) is below the fore body critical Mach number, typically about 0.8, or so.  This horizontal drag curve is extended in Mach number until it intersects the quasi-vacuum curve given by eq. (11) above.  The maximum Mach number 
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 for the constant base drag coefficient is found to be
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Finally, the limited data in ref. (1) for power-on base drag suggest it’s a very complex phenomenon significantly dependent on the nozzle exit pressure.  The reader is directed to ref. 1, p.20-16 which indicates the power-on base drag (based on “unpowered” base area) for well-developed nozzle flow could be 1.5 x that for the power-ff case.  Physically, the propulsive jet entrains and expels air in the base region thus reducing the base pressure.  Absent a better understanding, it’s recommended that this result with the power-off drag be applied to the annulus outside the nozzle.  That is,
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For the example body with a 4” diameter nozzle, power-on base drag is 
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The reader is cautioned that this be a significant contributor to power-on drag.  The power-on base drag in this example is 83% of the power-off base drag!

An example (same body as before) of the power-off base drag is shown below:
[image: image52.emf]Base Drag at Sea Level
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Flat plate fin base drag at subsonic speeds can be found from ref. 1, p. 3-21 to be given by
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Here 
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 is the skin friction drag of one side of one panel as per eq. (7) above.

Riding Lugs

Two riding lugs are needed to hold a rocket on its launch rail.  In appearance they consist of three concentric cylinders as sketched below:
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A compressible lug drag can be developed assuming the ref. (4) Newtoinan pressure distribution applies.  This is strictly accurate only for supersonic free stream Mach numbers, but can be finagled for subsonic free stream Mach numbers.  The stagnation pressure coefficient is
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The pressure ratio above depends on Mach number:

[image: image57.wmf]1

2

)

2

1

(

1

-

¥

ú

û

ù

ê

ë

é

-

+

=

g

g

g

M

p

p

T

for M ≤1

[image: image58.wmf]1

1

2

1

2

1

2

1

2

1

-

-

¥

ú

û

ù

ê

ë

é

+

-

+

ú

û

ù

ê

ë

é

+

=

g

g

g

g

g

g

g

M

M

p

p

T

for M ≥1
These relations can be used in the cylindrical Newtonian model, ref. (4) to find the drag area:
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This is plotted below:
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If one wished to fudge things to match the Hoerner data, we could take
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Parasite Drag

Parasite drag is often considered to be the dogs and cats of the drag world.  It encompasses all the drag sources too small individually to merit formal analyses like those outlined above.  Examples include skin joints, surface roughnesses and RF antennas.  Many, if not all, of these could be analyzed with the same methods described above, but the additional analysis is often considered a poor use of engineering resources.  As a result, one frequently accounts for parasite drag by adding an additional 5%, or so, to the total drag obtained from formal analysis.
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   The rail edges slide between the two larger


   cylinders.  The whole assembly is screwed to the


   rocket structure below with a round screw head 


   standing above the upper larger cylinder.  According


   to ref.(1), section 5, the incompressible drag of such 


   a riding lug is about
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   based on projected frontal area.  Then, the


   approximate drag area of a lug is just
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