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Introduction
The process of designing the structure of a new sounding rocket, or an element thereof, requires estimates of the structural loads imposed and the probability they will be exceeded, i.e., the risk of structural failure  This is true for both fins and body of the rocket.  Numerical results may be found from an associated spreadsheet, BENDIT, while this memo supplies the underlying rationale and derivations used to build BENDIT. BENDIT assumes rigid body motion with no pitch/yaw damping
.  For the body only two perturbing effects are modeled, thrust misalignment and wind gusts.  In addition, for the fins, these two must be supplemented by fin misalignment.  Gaussian statistics are used throughout.

The loads described in this memo are only those arising from external forces and aerodynamics.  Loads arising from any pressure difference between the external environment and internal cavity pressures are assessed elsewhere.

Nomenclature
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       Mnemonic                                   Definition                                                                                 
mi                                Mass of the ith element, sl
xi                                 Distance from the nose tip to the forward boundary of the ith

                                    element, ft
y                                  Spanwise distance from the rocket center line, ft
xcgi                              Center of mass of the ith element from the nose tip, ft
li                                   Length of the ith element, ft
ki li                              Center of mass from the front of the ith element, ft

X                                 Total rigid body center of mass from the nose tip, ft

Ji                                 Moment of inertia about element center of mass of the ith
                                    element, sl-ft2 
Ri                                Mean element radius (Average over element length), ft
Iyy                               Total rocket pitch / yaw moment of inertia, sl-ft2
q                                  Dynamic pressure  =  ½  U2, lb/ft2
Atmospheric mass density, sl/ft3
U                                 Flight speed, ft/sec
       Mnemonic                                   Definition____________________________       
L                                  Launcher length, ft
h                                  Altitude above ground level, ft
Sref                             Aerodynamic reference area, ft2
Angle of attack, rad

 t                                  Time, sec

      CDP                              Parachute drag coefficient

      SP                                 Parachute drag area, ft2
      qD                                Dynamic pressure at parachute deployment

      DD                               Drag deceleration at parachute deployment
CNi                            Normal force coefficient slope of the ith element, 1/rad

      xcpi                              Center of pressure of the ith element from the nose tip, ft
      CDi                              Drag coefficient of the ith element
      Si                                 Shear force acting on the forward face of the ith element, lb
      Mi                                Bending moment acting on the forward face of the ith element,
                                          ft-lb
      Lfin                             Fin bending moment, ft-lb

      G                               ,1 plane gust velocity, ft/sec

      G*                              Reciprocal of 0.59*the longitudinal gust correlation scale

                                          length, ft-1
       l                                  Axial distance from nozzle throat to rocket center of mass, ft

, 1 planethrust misalignment angle
      F Single panel fin misalignment angle, rad

      CLp                              Rolling moment coefficient due to roll rate, (ωR R / U)-1
      CLδ                              Rolling moment coefficient due to a one fin cant angle, rad-1
      Ω                                 Rocket center of mass offset from the axis of symmetry, ft
      ωn                               Short period pitch/yaw natural frequency, rad/sec

P                                Pitch/yaw wavenumber, radians/foot of altitude
      T                                 Liftoff thrust, lb
      Ax                               Burn out axial acceleration, ft/sec2
      Az                               Normal acceleration due to angle of attack, ft/sec2    

      Pi                                Axial force, positive in compression, acting on the front face

                                         of the ith element, lb
      δF                             Standard deviation in fin cant angle for a single fin panel, rad

      d                                 Aerodynamic reference length, ft

      CMF                           Single panel aerodynamic pitching moment coefficient due to a 

                                          cant angle, 1/rad                                        
ωR                               Roll rate, positive according right hand rule with thumb

                                 pointing in the flight direction, rad/sec
R                                Roll wavenumber, radians/foot of altitude
Y                                 Spanwise fin station at which loads are estimated, ft from the 

                                    rocket centerline
M(Y)                           Fin bending moment at spanwise station Y, ft-lb
c(y)                              Fin chord at spanwise station y,  ft

      Mnemonic                                   Definition____________________________
CNFTwo dimensional fin airfoil normal force coefficient slope, 

                                    1/rad
cR                                Root chord of an exposed fin panel, ft 

cT                                Tip chord of a fin panel, ft
b                                  Fin semispan , measured from the rocket centerline, ft

B                             Exposed fin semispan, ft                                 
Г                                  Fin leading edge sweepback angle, rad
Fin panel mass density per unit area, sl/ft2
xF                                The distance from the nose tip to the exposed fin panel root                                                      

                                    chord leading edge, ft
Var ( )                         The variance operator acting on ( )
                                    =  differencing from mean, squaring & ensemble averaging, Avg ( )                         The ensemble averaging operator acting on ( )
      N                                 Number of fin panels
CLp                              Roll damping stability derivative for the complete rocket, 1/rad

      CLδ                              Roll driving stability derivative for a single fin panel, 1/rad
      DL                               Design load (either shear force or bending moment)
σ                                 The planar standard deviation at a specific body station of the 

                                    shear force or bending moment

Pr                                The probability that the design load L will not be exceeded.

Perturbations 
I. Thrust Misalignment
General experience has shown that misalignment of the thrust vector with              respect the rocket’s center of mass is the most important of the various body-fixed misalignments arising from the fabrication and assembly processes used to create rocket hardware.  Since the angle of attack contributions from these are usually independent, the overall standard deviation in angle of attack is the RSS of the contributions of each.  In this case, only the dominant effect (thrust misalignment) has significant influence.  Note that thrust misalignment has two independent, orthogonal components in pitch and yaw.

Reference (1) documents the sounding rocket angle of attack response history due to a thrust vector misalignment.  It assumes that pitch/yaw damping is negligible, and finds the angle of attack response by solving the 4 DOF axisymmetric, time-varying equations of motion assuming constant axial acceleration.  By changing independent variable from time to altitude, the equations are converted to new ones with constant coefficients.  Since the initial angle of attack is zero as the rocket separates from its launcher, it should come as no surprise that the angle of attack initially overshoots the steady state solution and oscillates.  As dynamic pressure increases, the oscillation amplitude decreases.  For loads analysis, the oscillation amplitude envelope should be used because accounting for the details of phasing is more trouble than it’s worth.

II. Wind Gusts                                                                                                             

            Wind gusts are stochastic turbulence in the atmosphere.  See reference (2).  Unlike synoptic scale winds, the main issue with gusts is that they cannot be deterministically predicted for more than a small fraction of a second ahead.  This immediately precludes any predictive scheme for mitigating the gust response.  The variance in angle of attack at any altitude is found by summing over all the lower altitude bands accounting for the Batchelor correlations between altitudes.  Gusts are modeled as having a Dryden autocorrelation function with Gaussian statistics.  The angle of attack impulse response function is obtained, assuming constant axial acceleration, after changing the independent variable from time to altitude.  Closed form integrals for the gust angle of attack variance are found. 

III. Fin Misalignment 

This is basically a fin panel angular orientation issue.  Many fins are assembled to their rocket bodies without much care for a desired orientation.  Best practice requires each fin to be surveyed in cant angle at several spanwise stations, and an angular cant angle adjustment at its root made to minimize pitch/yaw misalignment torques while achieving the desired roll rate.  While fin misalignments also cause angle of attack excursions, in practice these are sometimes found to be of significantly lesser importance than those due to thrust misalignments or gusts.

Solving the roll equation of motion is commonly done by assuming a quasi-static condition in which the roll moment of inertia is neglected.  A key assumption is that any roll moments induced on the fin panels by vortices shed from the forebody at high angle of attack are not considered here.


Loading Conditions

The two principal sources of transverse loading, thrust misalignment and wind gusts have similar consequences.  Thrust misalignment, see ref. (1), generates an oscillatory response that is essentially undamped.  Gusts are stochastic and aperiodic, but the rocket’s small short period damping makes the angle of attack power spectral density show a pronounced spike at the fundamental natural frequency/wave number.

We assume therefore that the rocket is oscillating in, say pitch, and the maximum air loads occur when the instantaneous angle of attack is at its peak value.  Furthermore, we assume that these pitch motions can be assumed to behave as though there were an axle through the center of mass
.  However, when there is a non-zero angle of attack, aerodynamic normal forces will cause the center of mass to accelerate laterally.  It’s just that this acceleration results in negligible short period plunging damping.





 1  Relative Loadfing
The sketch above displays the relative amplitude of the aerodynamic spring / inertia torques and of the dash pot, or damping, torque.  The damping shown has been exaggerated to make the point; the true level is about10% of that shown.  The maximum loads are indicated by the arrows. 
For the tail fins, the angle of attack oscillation still occurs.  But the local angle of attack on a tail fin also has contributions from the fin root cant angle and the roll rate.  The fin loading condition is a steady state one to which the oscillatory angle of attack is added. 

The next issue is where in flight one expects he maximum loads to occur.  Selection of events to be analyzed for design loads is the responsibility of the Loads Analyst whose judgment is essential.  Maximum dynamic pressure is an obvious example of a candidate loads analysis event.  Others are stage ignition, burnout & parachute deployment.

Body Elements
Now decompose the body into elements.  See the sketch on the top of page 5.  Each element is assumed to have uniform mass density.  Then the mass properties of an element are

Length  =  xi+1 – xi  =  li ,
Mass  =  mi
,
Center of mass from the front of an element  =  ki
 li  =  xcgi ,(uniform density), and
Moment of inertia about element center of mass  =  (mi / 12) (3 Ri2 + li2)  =  Ji.
The airload acting on the element is: Airload  =  q Sref CNi .
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The aerodynamic torque (+ right hand rule, thumb into the paper) is:

Aerodynamic torque
  =   q Sref CNi  xcgi  –   xcpi).

Difference Equations and Initial Conditions
Now, apply Newton’s second law to an element, in both the force and torque senses.  The sketches below are guides that establish the relevant sign conventions.  
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Summing the forces acting on the element in the +z direction gives

                         Si+1 – Si – q Sref CNi   =  mi ( Az – (X – xcgi) d2dt2 ), where  (1)
X  =  The total rigid body center of mass given by

X  =  ( mi xcgi / ( mi, and
Az  =  The normal acceleration given by

                                        Az  =  – q Sref   ( CNi / ( mi.                                     (2)
Similarly, summing the y axis torques (right hand rule) about the element center of mass gives

Mi – Mi+1 + (xcgi – xi) Si + (li + xi – xcgi) Si+1 + q Sref CNi xcgi  – xcpi)  =  Ji d2dt2  (3) 

The nose tip initial conditions are that

                                                        S1  =  M1  =  0.                                                    (4)
A marching solution of these difference equations is straightforward.  Starting with the known value of S1, eq.(1) can be used to find S2.  Then, given M1, S1 and S2, eq.(3) can be used to find M2.  This marching process can be used for the second element, and so on.

Rigid Body Motion
Equations (1) and (3) have terms in Az,  and d2dt2.  The rigid body moment equation relates the latter two.  First, the total moment of inertia can be found from the parallel axis theorem:

Iyy  =  ( Ji + mi (X – xcgi)2.  Then,

                                 Iyy d2dt2  =  q Sref (CNi X – xcpi).                              (5)

As noted in the Introduction, can be one of the major BENDIT inputs.  Using eq’s (2) and (5) to find Az and d2dt2 enables the marching solution of eq’s. (1) & (3).

Axial Load

It’s time for a cautionary note.  In many rocket bodies parallel beam structures can be found.  Examples are a payload rack inside a fairing or a rocket engine, surrounded by fins and aft fairing, attached at its injector to the main structure.  Good design practice suggests these internal beams be laterally supported by the main structure over their length.  That is, a good approximation is that such internal beams carry only axial load.  The analysis reported here should be all right so long as the mass distributions for lateral bending and axial loading be distinguished and analyzed separately. 

The axial loads acting on an accelerating rocket are compressive forward of the body station at which the thrust is applied, and tensile at more after body stations. When thrust is applied to the after part of the rocket the inertial reaction comes from the masses above/forward.  Experience indicates that burn out is the most severe steady loading condition.  Then, the burn out acceleration is 
Ax  =  (T – q Sref ( CDi ) / ( mi.
Next, assume the thrust is applied to the aft face of the tth (pronounced “teeth”) element.  Then, the compressive load acting on the front face of the 1st element must vanish (P1  =  0) while the compressive load acting on the front face of the 2nd element is m1 Ax.  The general recursion formula needed for a solution marching down towards the tth element is

                                           Pi+1  =  Pi + mi Ax + q Sref CDi.                                  (6a)
Below/aft of the tth element the axial load is tensile.  Marching forward from the aft end where the axial load also vanishes results in a similar recursion relationship:
                                           Pi  =   Pi+1 – mi Ax – q Sref CDi.                                   (6b)
Note that tensile load carries a negative sign.  Equations (6a) and (6b) can be integrated by marching just like eqs. (1) and (3).  Modification of these equations to account for aerodynamic drag or for parallel structures, such as a payload rack inside a payload fairing, is straightforward.
Fins

The fins are decomposed into chordwise elements in a way directly analogous to what was done for the body.  Consider the sketch below of a fin airfoil used to define sign conventions at an arbitrary spanwise station:
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The local angle of attack experienced by an element of fin airfoil is

                            ( local  =  (1 + (R/y)2) + δF – ωR y / U.
Here, the body angle of attack  has been corrected per ref. (4) for incompressible cross flow upwash.  Using strip theory, one can readily integrate the roll torque / aerodynamic bending moment resulting from this local angle of attack. See Ref. (3) for a more detailed discussion of this topic. 
                                           b                                                                           

                           M(Y)  =  ∫ q c(y) CNF ( local (y – Y) dy.                                    (7)

                                          Y
Note that the roll inertial reaction torques have been neglected because the rocket’s roll acceleration is small.  But, the pitch/yaw inertial reaction loads due angle of attack are not negligible.  See Appendix C for a fuller description of the inertial relief fin bending moment. 
Using a nominal mean value of δF, one can easily find the nominal mean spanwise distribution of bending moment, noting that the mean value of  is zero.

Finding standard deviation of bending moment is a little trickier.  First, assume that the fin cant angle errors are all independent, and, in turn, their correlation with α must be included.  That is, assume δ errors are not independent of α.  Then,

Var (( local)  =  Var (() (1 + (R/y)2)2 + Var( δF – ωR y / U) + Var[(1 + (R/y)2)
                          * (δF – ωR y / U)]
                  = Var (() (1 + (R/y)2)2 + Avg [δF2 – 2 δF ωR y / U + ωR2 y2 / U2 
                     + 2 (1 + (R/y)2) * (δF – ωR y / U)]. 

To evaluate the averaged terms in the parentheses, we need the rigid body roll rate equation:
                                                                            N

                                         CLp ωR R / U + CLδ ( δF  =  0.
Then,                                                           N
ωR / U  =  – CLδ ( δF / R CLp, and
Var (( local)  =  Var () (1 + (R/y)2)2 + Var (δF) [ 1 + 2 y CLδ / R CLp 
             + N (y CLδ / R CLp)2 + Sref d CMF (1 + (R/y)2) / Iyy  (λP2  λR2 )].    (8)
The last term in the above equation results from correlations between the angle of attack and the local fin cant angle error.  See Appendix D, page 20, of this memo.
Note that the standard deviation in roll rate is

ωR  =  U CLδ δF ( N / R CLp.                                     (9)
Knowing that fin panel cant errors are normally distributed, this can be used to estimate the roll rate statistics. 
The strip theory results for CLp and CLδ are developed in ref. (5), and reported in Appendix E.  As always, Var () is the variance of the wind gust and thrust misalignment s.  Thus, to obtain an estimate of the standard deviation in fin bending moment, we can integrate eq.(7) with the standard deviation in ( local found from eq. (8) above.  See Appendix C for the results of these integrations.
Parachute Deployment

Another important flight condition that should be considered when analyzing structural loads is parachute deployment.  This applies to both drogue and main parachute deployments.  The CSULB ESRA rockets all store their parachutes in the rocket body forward of the rocket motor.  Their risers are laid on the outside of the rocket in faired trays.  Attachment to the racket structure is at the aftermost bulkhead.
At deployment a small black powder charge expels the parachute from its storage bay.  As it inflates it swings into position directly behind the rocket.  The design loading condition happens just as inflation behind the rocket is completed but before significant deceleration can occur.  The deceleration at that time is
DD = qD SP CDP / ∑ mi
The resulting structural loading is entirely in tension. It is given by
Pi = – DD ∑ mi,
where the summation is over all the elements forward of body station i.  As a caution to the analyst, note that the mass of the deployed parachute, risers and bridle has been moved from their storage bay to their deployed location behind the rocket.
Combinatorics
The results so far described are the shear force and bending moment distribution along a rocket body for a given .  Furthermore, if the value used is interpreted as a standard deviation (the root-sum-square of the contributions from thrust misalignment and wind gusts) then the shear force and bending moment at any body station are also standard deviations.  Presumably these will follow a normal (Gaussian) distribution with zero mean.  But, rocket bodies are rotationally symmetric about their center line.  That is, in a plane orthogonal to the  plane (the ( plane) there will be exactly the same distribution of shear force and bending moment.  Because the ( and ( orientations are arbitrary, it’s the amplitude of the shear force and bending moment that matter, and these, for the above reasons, will follow a Rayleigh distribution:   
                                                 DL  =  σ √ – 2 log(1 – Pr) , where                          (10)
DL  =  Design load,

σ  =  Standard deviation in the single plane load, and
Pr  =  Probability the load L will be exceeded.

As an example, if the loads are to be exceeded no more than once in a thousand flights, eq.(10) gives
DL  =  3.717 σ
This offers a powerful technique to manage an important flight risk, that of structural failure.

Fin loading statistics are difference because fins have planar geometry.  Given the mean and standard deviation in fin bending moment profile, the one dimensional cumulative Gaussian distribution will generate the probability that any given bending moment, Lfin, will not be exceeded.  Fortunately, Excel provides this function so BENDIT can provide consistent structural loads for both rocket body and fins.
Summary
This memo documents the BENDIT code that generates design structural loads for rocket bodies and fins.  These results are prepared for an input value of the probability that these loads will not be exceeded.

As an example, the 99% reliable structural loads for an M class ESRA-like rocket at burnout as developed from BENDIT are displayed below:
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As expected, the shear force resembles the derivative of the bending moment.  The axial force shows the expected saw wave shape.  It was estimated neglecting aerodynamic drag.
[image: image6.emf]99% Fin Design Bending Moment                                                    
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Appendix A: Fin Mass Properties 

Most small fins are constructed from a solid slab or sheet of material.  Most large fins use a built-up construction technique similar to an aircraft wing with constant thickness skins.  In either case the assumption of a constant surface mass density is a good approximation.  Also, assume the fins are attached to a cylindrical body element.  Now consider the fin geometry sketched below: 


[image: image7]
Now, suppose good design practice has been followed, and each fin has been attached to the body by its spar.  All bending and shear loads are carried out via the spar; torsion is carried out by the spar and the fin cant angle adjustment tab.  It follows that the body element with the attached fin spars is the one whose mass properties must be found.  Then,

Fin mass  =   * area  =   B (cR + cT)/2, and 

Total fin mass  =  N B (cR + cT)/2.

Then since  (b – R) c(y)  =  A – C y  =  cRb – cTR – (cR – cT) y
                                      B                          B

Fin  y mass moment  =  ∫  c dy * y  =  ∫ (cR y – (cR – cT) y2 / B) dy
0  0

                                        =  cR B2/2 – (cR – cT) B2/3)  =  B2 ( cR/6 + cT/3)

                                            B                          B

      Fin  x mass moment  =  ∫  c dy * x  =   ∫ c dy * (y tanГ + c/2)                                                                                 
                                            0                          0                             
                                              B

                                      =    ∫ (y tanГ + (A – Cy)/2) (A – Cy) dy

                                           B 0

                                   =  ∫[(A2 – 2 A C y + C2 y2)/2 + A tanГ y – C tanГ y2] dy

                                         0

                                   =  [(A2B – A C B2 + C2B3/3)/2 + A B2 tanГ /2 – B3 C tanГ/3 ]

  =  [(B cR2 – cR B (cR – cT) + (cR – cT)2 B/3) /2 + cR B2 tanГ/2 – B2 (cR – cT) tanГ/3]

These two moments place the fin center of mass (x CM, y CM) relative to the fin root chord leading edge:

x CM  = 2 [(cR2 – cR (cR – cT) + (cR – cT)2/3) /2 + cR B tanГ/2 – B (cR – cT) tanГ/3] / (cR + cT), and

y CM  =  2 B ( cR/6 + cT/3) / (cR + cT).
The element center of mass  =  [mi li ki + N  B (cR + cT)/2  * (x CM + (xF – xi))] / [mi + N  B (cR + cT)/2] from the front of the fin bearing element.
The fin contributions to the moment of inertia depend on whether the bending moment vector lies in the plane of a fin panel or is normal to it.
First, analyze the case of the bending moment vector in the plane of the fin panel, Jo.  Evaluate the moment of inertia about an axis parallel to the bending moment and passing through the root chord leading edge, making frequent use of the parallel axis theorem:

                   B

Jo  =  ∫ c ((y tanГ + c/2)2 + c2/12) dy, where y  =  0  corresponds to the outer body

             0
surface.  Then,

              B

Jo   =  ∫ c (y2 tan2Г + c y tanГ + c2 / 3) dy, or
              0
           B
     = ∫ (A – C y) (y2 tan2Г + (A – C y) y tanГ + (A – C y)2 / 3) dy

           0

       B

∫ [A tan2Г y2 + A2 tanГ y – A C tanГ y2 – C tan2Г y3 – A C tanГ y2 + C2
 tanГ y3  + A3/3 – A2C y + A C2y2 – C3y3/3 ] dy, or
       B
∫ [A tan2Г y2 + A2 tanГ y – 2 A C tanГ y2  – C tan2Г y3 + C2 tanГ y3 + A3/3
      0             – A2C y + A C2y2 – C3y3/3 ] dy, 
[A B3 tan2Г / 3 + A2 B2 tanГ / 2 – 2 A C B3 tanГ / 3  – C B4 tan2Г / 4 

        + C2 B4 tanГ / 4 + A3 B / 3 – A2C B2 / 2 + A C2B3 / 3 – C3B4 / 12 ]
[cR B3 tan2Г / 3 + cR2 B2 tanГ / 2 – 2 cR (cR – cT) B2 tanГ / 3 
       – (cR – cT) B3 tan2Г / 4 + (cR – cT)2 B2 tanГ / 4 + cR3 B / 3 – cR2(cR – cT) B / 2
       + cR (cR – cT)2 B / 3 – (cR – cT)3B / 12 ], or
Jo = B [(cR + 3 cT ) B2 tan2Г + B tanГ (cR2 + 2 cR cT + 3 cT2)  
              + cR3 + cR2 cT + cR2 cT  + cT3 ] / 12.

Next, analyze the case of the bending moment vector normal to the fin plane, J1.  Evaluate the moment of inertia about an axis parallel to the bending moment and passing through the root chord leading edge:

             B
 J1  =  ∫ [c3/12 + c (y2 + (y tanГ + c/2)2 )] dy, or

             0 

            B

J1  =  ∫ [(A–Cy)3/12 + (A–Cy )(y2 + y2 tan2Г + (A–Cy) y tanГ + (A–Cy)2 /4)] dy

            0     

       B

=  ∫ [(A3 – 3A2Cy + 3AC2y2 – C3y3)/12 + (A – Cy) y2 (1 + tan2Г) + (A2 –2ACy +

       0

 C2y2) y tanГ + (A3 – 3A2Cy + 3AC2y2 – C3y3) / 4)] dy, or

             B 

 J1  ∫ [(A3 – 3A2Cy + 3AC2y2 – C3y3)/3 + (Ay2 – Cy3) sec2Г + (A2 y –2ACy2 +

             0

 C2y3) tanГ] dy, or
J1  (A3B /3 – A2CB2/2 + AC2B3/3 – C3B4/12 + (AB3/3 – CB4/4) sec2Г + (A2 B2/2 – 2ACB3/3 + C2B4/4) tanГ], or

J1  (cR3B /3 – cR2(cR – cT) B /2 + cR(cR – cT)2 B / 3 – (cR – cT)3B/12 + (cRB3/3 – (cR – cT)B3/4) sec2Г + (cR2 B2/2 –2cR(cR – cT)B2/3 + (cR – cT)2B2/4) tanГ], or
 J1  =  B(cR3 / 3 – cR2 (cR – cT) / 2 + cR (cR – cT)2 / 3 – (cR – cT)3 / 12  + (cR B2 / 3 – (cR – cT) B2 / 4) sec2Г + (cR2 B / 2 – 2 cR (cR – cT) B / 3 + (cR – cT)2 B / 4) tanГ], or 
J1  =  B(cR3 + cR2 cT + cR cT2 + cT3 ) + B2(cR + 3cT) sec2Г + B (cR2 + 2 cR cT  + 3 cT2 ) tanГ] / 12.

These results are directly applicable to a four-finned rocket, the most common configuration.  The same analysis technique can be applied to other numbers of fins, but, there is some additional labor involved.

Appendix B: Conical Element Mass Properties
It’s more than a little likely that some of the body elements will be conical.  As in the main body of this memo, it is assumed that any conical element mass is obtained offline and provided to BENDIT as an input.  However the element center of mass is probably not readily available offline, and therefore must be generated within BENDIT.  Assuming such an element has a constant volumetric mass density, the center of mass as a fraction of the element length li, as measured from the larger end, ki, can be shown to be

ki  =  ¼ (1 + 2z + 3z2 )/(1 + z + z2 ), where
z  =  Smaller radius / Larger radius

An appropriate reference for this result is William H. Beyer, editor, “CRC Standard Mathematical Tables”, 27th Edition, CRC Press, Inc., page131.  

While a purist might demand the element pitch moment of inertia be also amended to reflect the conical geometry, the constant volumetric mass density assumption becomes significantly shakier.  An analyst who wishes to capture this effect more accurately has only to break the body up into shorter elements.

Appendix C: Fin Bending Moment Statistics
The integrations described in the main body of this memo are straightforward.  First, the mean fin bending moment is
                           b

Mean(M(y))  =  ∫ q c(η) CNF ( local (η – y) dη                         
                           y
                 b
=  q CNF∫ (A – Cη) (δF – ωR η / U) (η – y) dη, where
                 y
where δF and ωR are interpreted as mean values.  Also, note that
A  =  (cRb – cTR)/(b – R), and
                                             C  =  (cR – cT)/(b – R).
Then,

                 b
= q CNF  ∫ (AδF – AωR η/ U – CδFη  + CωRη2/ U) (η – y) dη, or
                y
                 b
= q CNF  ∫ (AδFη – AωRη2/ U – Cδη2  + CωRη3 / U – AyδF + (AωRy / U
                y                                                       + Cδyη  – CωRyη2 / U) dη
=  q CNF  [AδF(b2 – y2)/2 – (AωR / U + CδF) (b3 – y3)/3 + CωR / U (b4 – y4)/4 
     – AyδF(b – y) + (AωRy / U + CyδF)(b2 – y2)/2 – CωRy / U (b3 – y3)/3].  Then,
Mean(M(y))  =  q CNF δF [A(b2 – y2)/2 + (ANCLδ/RCLp – C)(b3 – y3)/3 – CNCLδ/RCLp(b4 – y4)/4 – Ay(b – y) – (ANCLδ/RCLp – C)y(b2 – y2)/2                                  + CNCLδ/RCLpy(b3 – y3)/3], or
Mean(M(y))  =  q CNF δF [A(b2 – 2by + y2)/2 + (ANCLδ/RCLp – C)(2b3 – 3b2y + y3)/6 – CNCLδ/RCLp(3b4 – 4b3y + y4)/12].
The variance in fin bending moment is found similarly.  First, substitute for ( local into eq.(7), and carry out the integration:
                           b

M(y)  =  ∫ q c(η) CNF ( (1 + (R/η)2) + δF – ωR η / U) (η – y) dη, or
                          y
                                    b
M(y)  =  q CNF ∫ (A – Cη) ( (1 + (R/η)2) + δF – ωR η / U) (η – y) dη, or
                                         y
                                        b
M(y)  =  q CNF ∫ (AR2/η2 + A ( + δF) – C( + δF)η – CRη – AωRη/U
                                 y                                                 + CωRη2/U) (η – y) dη, or
                            b
M(y)  =  q CNF ∫ (AR2/η + A( + δF)η – C( + δF)η2 – CR – AωRη2/U + 
                            b

ωRη3/U – AR2y/η2 – A( + δF)y + C( + δF)yη + CRyη + AωRyη/U – CωRyη2/U)dη, or
  =  q CNF [AR2log(b/y) + A( + δF)(b2 – y2)/2 – C( + δF)(b3 – y3)/3
 – CR(b – y – AωR(b3 – y3)/3U + CωR(b4 – y4)/4U – AR2(1 – y/b) – A( + δF)y(b – y) + C( + δF)y(b2 – y2)/2 + CRylog(b/y) + AωRy(b2 – y2)/2U – CωRy(b3 – y3)/3U].
Next, separate the terms in this equation into those in  , in δF , and in ωR/U.  The result is
M(y)  =  q CNF [AR2log(b/y) + A(b2 – y2)/2 – C(b3 – y3)/3 – CR(b – y– AR2(1 – y/b) – Ay(b – y) + Cy(b2 – y2)/2 + CRylog(b/y)] + q CNF δF [A(b2 – y2)/2 – C(b3 – y3)/3 – Ay(b – y) + Cy(b2 – y2)/2] + q CNFωR / U [– A(b3 – y3)/3 + C(b4 – y4)/4 + Ay(b2 – y2)/2 – Cy(b3 – y3)/3], or
M(y)  =  q CNF [AR2(log(b/y) – 1 + y/b)+ A(b2 – 2by + y2)/2 + C (–2b3 + 3b2y – y3)/6 + CR(ylog(b/y) – b + y)] + q CNF δF [A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y –  y3)/6] + q CNFωR / U [A(–2b3 + 3b2y – y3)/6 + C(3b4 – 4b3y +  y4)/12]                 (11)
The next step is to generate the variance by squaring the expression for M(y), and forming its ensemble average.  The process is just like that demonstrated on the top of page 7 with the fin cant error-roll rate correlations developed along the lines of that on pages 8 & 9:
Var(M(y))  =  Var() (q CNF)2[AR2(log(b/y) – 1 + y/b)+ A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6 + CR(ylog(b/y) – b + y)]2
+ Var(δF) (q CNF)2[A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6]2 
– 2Var(δF)(q CNF)2CLδ/RCLp[A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6]
*[A(–2b3 + 3b2y – y3)/6 + C(3b4 – 4b3y +  y4)/12] + Var(δF)
*(q CNF)2(CLδ/RCLp)2N[A(–2b3 + 3b2y – y3)/6 + C(3b4 – 4b3y +  y4)/12]]2, or
Var(M(y))  =  Var() (q CNF)2[AR2(log(b/y) – 1 + y/b)+ A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6 + CR(ylog(b/y) – b + y)]2 
+ Var(δF)(q CNF)2{[A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6]2 – 2CLδ/RCLp
*[A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6][A(–2b3 + 3b2y – y3)/6 + C(3b4 – 4b3y +  y4)/12]2] + (CLδ/RCLp)2N[A(–2b3 + 3b2y – y3)/6 + C(3b4 – 4b3y +  y4)/12]2}       (12)
Var(δF) Sref d CMF  / Iyy  (λP2  λR2 ) [AR2(log(b/y) – 1 + y/b)+ A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6 + CR(ylog(b/y) – b + y)][A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6 ]}.  

Note that the cross correlation between  and ωR / U vanishes because the  response has two δF terms of opposite sign from fins on opposite sides of the rocket while ωR / U has the same two δF terms, only with the same sign.  The two δF variances cancel each other.
There will also be an inertial reaction to the imposed body angle of attack, and it will act in a way that opposes the aerodynamic loads given by eq. (11). 
                                   b

               MI(y)  =  – ∫  c(η) (η – y) [d2dt2 (xF + x CM – X) + Az] dη, where     

                                  y 
MI(Y)  = The inertial pitch reaction fin bending moment.  Then,
                                                                                    b

MI(y)  =  – d2dt2 (xF + x CM – X) + Az] ∫ (A – Cη) (η – y) dη, or
                                                                                   y
MI(y)  =  – d2dt2 (xF + x CM – X) + Az] [A(b2 – 2by + y2)/2) + C(–2b3 + 3b2y
– y3)/6].
Next, use eq. (5) to find d2dt2
MI(y)  = – ωn2 (xF + x CM – X) + Az/ ] [A(b2 – 2by +y2)/2) + C(–2b3 + 3b2y
 – y3)/6]                               
Finally, this inertial reaction bending moment should be added into the  term in eq. (11), thus leading to 
   Var(M(y))  =  Var() (q CNF)2[AR2(log(b/y) – 1 + y/b)+ A(b2 – 2by + y2)/2 + C(–2b3 + 3b2y – y3)/6 + CR(ylog(b/y) – b + y)]2  + Var() [ωn2 (xF + x CM – X) + Az/] (A(b2 – 2by +y2)/2) + C(–2b3 + 3b2y – y3)/6))]2  – 2 Var() q CNF ωn2 (xF + x CM – X) + Az/] [A(b2 – 2by +y2)/2) + C(–2b3 + 3b2y – y3)/6] [AR2(log(b/y) – 1 
+ y/b) + A(b2 – 2by + y2)/2 + C (–2b3 + 3b2y – y3)/6 + CR(ylog(b/y) – b + y)].      (14)                                                            
Equation (14) replaces the first Var() term in eq.(12), and the bending moment variance is just the supplemented form of eq. (12).
In BENDIT this result is coded to find the fin bending moment standard deviation.

Appendix D: Approximate Angle of Attack Estimates
References 1 and 2 provide formal estimates of the angles of attack due to gust, and thrust and fin misalignment that are both dynamically and statistically valid.  These are developed in terms of pitch and roll wavenumbers.  See ref.(4) for a description of the pitch wavenumber.  Basically, a wavenumber is just a frequency in the altitude domain rather than the more familiar frequency in the time domain.
The gust model presented here assumes that the rocket encounters a stochastic gust field described by a Dryden autocorrelation function.  Then, neglecting any short period damping
var(vz(h))  =  λP2 G2/(G*2 + λP2){G*(h – L) – G* sin(2 λP (h – L))/2 λP
– sin2(λP (h – L)) + 2 λP2 /(G*2 + λP2) – 2 λP /(G*2 + λP2) exp(–G* (h – L))*
G* sin(λP (h – L)) + λP cos(λP (h – L))]}.                                                             (11)
Then, the 1 sigma, 1 plane gust angle of attack is
G  =  (var(vz(h)) / U.                                             (12)
Gust parameter data can be found in ref.(7).

Reference 1 includes steady state angle of attack estimates for thrust misalignment, fin misalignments and C.G. offset for a rolling rocket.  The results are that the 1 sigma, 1 plane steady state thrust misalignment response is
T  T(varℓ var( Ω )Iyy U2 (λP2  λR2 ).                  (13)
See ref.(6) for parameter data on  and Ω.

As always, because these two angle variances are statistically independent, the system variance is the sum of its two contributors.  The steady state fin misalignment response is that:
F  =  √ N / 8  Sref d CMF δF / Iyy  (λP2  λR2 )                         (14)
Again, ref.(6) has data for fin misalignment errors.  The stability derivative, CMF, can be obtained from the fin assembly normal slope due to cant angle and its center of pressure from the Barrowman Equations, ref. (8), and knowledge of the rocket center of gravity.  Finally, the complete system planar  is just the RSS of the four independent contributors
(G+ TF
A summary of typical results is shown below.  These results are for a typical single stage M class sounding rocket flown in the ESRA-sponsored IREC competition evaluated at maximum velocity:

	Source
	1 σ Alpha, rad

	Thrust Misalignment
	0.044730143

	Fin Misalignment
	0.001774548

	Center of Gravity Offset
	0.006957534

	Gusts
	0.020323395

	
	

	Root Sum Square
	0.049652617


Appendix E: Roll Stability Derivatives
Reference (3) documents strip theory for setting fin cant angles.  As a by-product, it also develops the roll stability derivatives, for the single fin driving and overall damping torques:
CL  =  L / qSd  =  L/ 2πR3q.  Then,

CL  =  ∂CL / ∂cN(b – R) [½ A (b + R)⅓ C(b2 + bR +R2)] / 2πR3, and
CLp  =  ∂CL / ∂(ωRd/2U)  =  ∂CL / ∂(ωRR/U), or

CLp  =  cN(b – R)N [– ⅓ A (b2 + bR +R2) + ¼ C (b3 + b2R + bR2 + R3)] / 2πR4.
Here, A and C are defined on page 11.  Both these derivatives are based on body cross section area and body diameter.  The damping derivative is taken with respect to          ωR R/U.  
The airfoil normal force slope with respect to local angle of attack is an average across the fin span. Take it to be just that for a single fin panel, referenced to its own area:
cN CN
This implies that the “average airfoil” normal force coefficient slope includes the effects of tip losses, but no body interference.  We have already included an inverse square body upwash in the loading so that this will cover all the loads on the exposed fin panels.  Note that the entire fin assembly normal force coefficient slope, an input to BENDIT, includes the fin alone and the body-on-fin interference and the fin-on-body interference per ref.(5).
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� Pitch (and yaw) damping arises from three distinct terms in the equations of motion: first, aerodynamic pitch damping (CMq), second, aerodynamic plunging motion damping (CZ), and third, rocket motor jet damping, (MJ).  Taken together, they damp the classical short period mode to much less than 1% of critical.   


� Freeing the rocket to plunge would only add a negligibly small amount of short period damping.  In other words, the difference between angle of attack and inertial pitch angle is also negligible.


� These formulas are not valid for the body element to which the fins are attached.  See Appendix A for a detailed description of the mass properties of this element.


� See Appendix B.


� The body element carrying the fins is assumed to have constant radius, and hence will have nearly zero subsonic CNi according to slender body theory.  Even at supersonic speeds its normal force will be small.  The CNi is essentially all due to the fins, fin-body and body-fin interference.   
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